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1. INTRODUCTION

The NYU Processor Design VIP Team was founded
in Spring 2023 with the goal of developing and
synthesizing novel microprocessor designs. The
team’s inaugural project is a 32-bit SoC with a
single-core CPU capable of executing the
unprivileged version of the RISC-V 32 I[SA.

Since an SoC consists of more than just a CPU,
hardware development of the SoC is split across three
sub-teams, Core, AMBA, and Memory, with each
sub-team having its own leader, referred to as Czars,
who is responsible for that sub-team’s portion of the
technology stack. The overall team operates on an
open-source model with each sub-team having a main
GitHub repository through which contributions are
made. As Core Czar, this report will focus on the
development of the SoC’s CPU, though other
components will be mentioned in passing as needed.

For the Core team, all hardware components are
implemented using SystemVerilog and tested using
Catch2. The SystemVerilog modules are converted to
C++ objects with Verilator and CMake is used to
configure and build the project for C++ testing. All
core-related work is stored in the NYU Processor
Design Team’s nyu-core GitHub repository.

2. ANALYSIS OF APPLICABLE
STANDARDS

The unprivileged version of the RISC-V 321 ISA
consists of the instructions shown in Figure 1.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct? [ 152 sl funct3 rd opcode R-type
imm[11:0] sl funct3 rd opcode I-type
imm(11:5] [ rs2 rsl funct3 | imm[4:0] opcode S-type
imm([12[10:5] | rs2 rsl funct3 | imm[4:1[11] opcode B-type
imm[31:12] rd opcode U-type
imm[20[10:1[11[19:12] rd opcode J-type
RV32I Base Instruction Set
imm(31:12] rd 0110111 | LUI
imm(31:12] rd 0010111 | AUIPC
imm[20[10:1[11[19:12] rd 1101111 JAL
imm[11:0] rsl 000 rd 1100111 JALR
imm{12[10:5 152 sl 000 imm[4:1[11 1100011 BEQ
imm{12[10:5 152 sl 001 imm(4:1[11 1100011 BNE
imm{12[10:5 152 sl 100 imm(4:1[11 1100011 BLT
imm{12[10:5 152 sl 101 imm(4:1[11 1100011 BGE
imm{12[10:5 152 sl 110 imm(4:1[11 1100011 BLTU
imm{12[10:5 152 sl 111 imm(4:1[11 1100011 BGEU
imm([11: sl 000 rd 0000011 LB
imm[11:0 sl 001 rd 0000011 LH
imm[11:0 sl 010 rd 0000011 LW
imm[11:0 sl 100 rd 0000011 LBU
imm[11:0 sl 101 rd 0000011 LHU
imm[11:5 152 sl 000 imm[4:0; 0100011 SB
imm[11:5 152 sl 001 imm[4:0, 0100011 SH
imm[11:5 152 sl 010 imm[4:0; 0100011 SW
imm([11: sl 000 rd 0010011 ADDI
imm[11:0 sl 010 rd 0010011 SLTI
imm[11:0 sl 011 rd 0010011 SLTIU
imm[11:0 sl 100 rd 0010011 XORI
imm[11:0 sl 110 rd 0010011 ORI
imm[11:0 sl 111 rd 0010011 ANDI
0000000 shamt sl 001 rd 0010011 SLLI
0000000 shamt sl 101 rd 0010011 SRLI
0100000 shamt sl 101 rd 0010011 SRAI
0000000 152 sl 000 rd 0110011 ADD
0100000 152 sl 000 rd 0110011 SUB
0000000 152 sl 001 rd 0110011 SLL
0000000 152 sl 010 rd 0110011 SLT
0000000 152 sl 011 rd 0110011 SLTU
0000000 rs2 sl 100 rd 0110011 XOR
0000000 152 sl 101 rd 0110011 SRL
0100000 rs2 sl 101 rd 0110011 SRA
0000000 rs2 sl 110 rd 0110011 OR
0000000 rs2 sl 111 rd 0110011 AND
fm pred { suce sl 000 rd 0001111 FENCE
000000000000 00000 000 00000 1110011 ECALL
000000000001 00000 000 00000 1110011 EBREAK

Figure 1: RISC-V 321 Instructions [1]

Since the I-type instructions are rather varied in their
functionality, they were split into three types for ease
of decoding. I type 1 instructions are the immediate
operation instructions such as ADDI and XORI, I
type 2 instructions are the load instructions, and the
sole I type 3 instruction is the JALR instruction.

Since the CPU design only consists of one core,
FENCE is treated as a NOP. The environment
instructions, ECALL and EBREAK, are also treated
as NOPs since their exact implementation is left up to
the CPU designer to decide and they use the Control
and Status Registers (CSRs) which are left



unimplemented in the current design since we are
only interested in the unprivileged ISA.

3. DESIGN WORK
3.1. PIPELINE AND LATCHES

The block diagram for the core design is shown in
Figure 2.

Figure 2: CPU Block Diagram

Figure 2 shows the modules that make up the core,
which are as follows: Program Counter (PC),
Instruction Cache, IF/ID Latch, CPU Registers,
Branch Address Calculator, ID/EX Latch, Arithmetic
Logic Unit (ALU), Branch Evaluator, EX'MEM
Latch, Data Cache, MEM/WB Latch, Branch
Manager, Branch Predictor, Pipeline Reset Module,
and General Control Module.

To allow for faster clock speeds and a more modular
design, the general design for the Core was chosen to
be a multi-cycle pipelined design. To keep the
general design similar to what members of the team
would be familiar with from the Computer
Architecture course, a five-stage pipeline was used
with the following stages: Instruction Fetch (IF),
Instruction Decode (ID), Execution (EX), Memory
Access (MEM), Write Back (WB).

The names of the pipeline stages succinctly describe
what happens in them. In the IF stage, an instruction
is loaded from memory via the instruction cache
based on the address stored in the program counter. In
the ID stage, the previously fetched instruction is
decoded to determine the relevant registers,
immediate value, and potential branch address. In the
EX stage, the logic calculation needed for the

instruction is performed by the ALU. In the MEM
stage, if an instruction accesses memory, the relevant
address in memory is written to or read from via the
data cache. In the WB stage, any relevant data is
written to the specified destination register.

The modules that make up the CPU can generally be
categorized by the pipeline stage or stages they
belong to. Figure 3 shows the block diagram of the
core color-coded by pipeline stage.

Figure 3: CPU Block Diagram Pipeline Stages

In Figure 3, red is for the IF stage, orange is for the
ID stage, yellow is for the EX stage, green is for the
MEM stage, and blue is for the WB stage. Modules
with multiple colors can be considered part of two or
more pipeline stages while modules colored purple,
all of which are for branch prediction, do not neatly
fit into any stage or set of stages.

To carry over and convert necessary values from one
pipeline stage to the next, the four latch modules
shown in Figure 4 were designed.

Figure 4: CPU Pipeline Latches



As shown in Figure 4, a latch module is present
between the IF and ID stages, the ID and EX stages,
the EX and MEM stages, and the MEM and WB
stages, for a total of four latches.

The IF/ID latch carries over the PC value from the IF
stage to the ID stage, determines the first, second, and
destination registers from the instruction code, and
determines the immediate value from the instruction
based on the immode control signal. The immode
control signal ranges in value from 0 to 5, with each
value corresponding to a different method of
constructing the immediate value from the 4-byte
instruction. Table 1 shows the different immediate
value construction methods and their corresponding
immode value.

Table 1: immode Control Signal Function

Table 2: a_sel Control Signal Function

a_sel | ALU Operand a (a)

0 First register data
1 Passed in PC value
3 0

Table 3: b_sel Control Signal Function

immode | Immediate Value (imm)

0 32’00

1 Sign Extend ins[31:20]

2 Sign Extend {ins[31:25], ins[11:7]}

3 Sign Extend {ins[31], ins[7],
ins[30:25], ins[11:8], 1’b0}

4 {ins[31:12], 12°b0}

5 {11°b0, ins[31], ins[19:12], ins[20],

ins[30:21], 1°b0}

The ID/EX latch passes the destination register
number, the branch_taken signal from the branch
predictor, the data from the second register, the
calculated branch address, and the program counter
value to the EX stage and determines the operands
for the ALU based on the input signals and the a_sel
and b_sel control signals. Tables 2 and 3 show the
values that can be selected as an operand and their
corresponding control signal value for operands a and
b respectively.

b_sel | ALU Operand b (b)

0 Second register data

1 Immediate value

2 4

3 Immediate value << 12

The EX/MEM latch passes the destination register
number and the ALU output data from the EX stage
to the MEM stage, and passes in the data from the
second register to be used as the data to write to
memory.

Finally, the MEM/WB latch passes the destination
register number from the MEM stage to the WB stage
and calculates the data to store in the destination
register based on the input signals and the wbs
control signal. The wbs control signal ranges from 0
to 5 and Table 4 shows the different values that can
be written to the destination register based on the wbs
control signal value. Here, mrd is the data read from
memory and alu_out is the ALU output.

Table 4: wbs Control Signal Function

wbs Destination Register Write Data (rdd)
0 Sign Extend mrd[7:0]

1 Sign Extend mrd[15:0]

2 mrd

3 alu_out

4 Zero Extend mrd[7:0]

5 Zero Extend mrd[15:0]




3.2. INSTRUCTION FETCH STAGE

The IF stage consists of the Program Counter and
Instruction Cache modules.

The PC module, shown in Figure 5, is a simple 32-bit
register that receives input from the system
responsible for branch prediction and can be enabled
or disabled with the pc_en control signal.

clk rstn

pc_en

npc PC

pc =

Figure 5: Program Counter Module

The Instruction Cache, shown in Figure 6, is a
connection module containing the Instruction Cache
Manager and L1 Instruction Cache modules.

cache_clk rstn_h mem_busy mem_responce_data

= pc ins P
Instruction

Cache isBurst

wEn

ren |

Figure 6: Instruction Cache Module

The Instruction Cache Manager module acts as a
translation layer between the CPU, memory, and the
L1 Instruction Cache. Its main function is to convert
memory requests from the L1 Instruction Cache into
the format accepted by AMBA which serves as the
SoC’s memory controller.

The L1 Instruction Cache module is still in
development and its exact details have yet to be
finalized.

3.3. INSTRUCTION DECODE STAGE

The ID stage consists of the General Purpose CPU
Registers and Branch Address Calculator modules.

The General Purpose CPU Registers module, shown
in Figure 7, consists of 32 32-bit registers, with
register 0 always returning 0 and registers 1-31 being
general purpose registers.

| |

cache_clk rstn_h

« whe

=1 rs1n rsid |—

4 rs2n Registers rs2d =

< rdn

Figure 7: General Purpose CPU Registers Module

The General Purpose CPU Registers module takes in
the register numbers for the first and second registers
specified by the instruction in the ID stage and
outputs the data values held in the registers. It also
takes in the number and data to write for the
destination register specified by the instruction in the
WB stage and writes said data to the specified
register. Writing to the destination register can be
enabled or disabled using the wbe control signal.



The Branch Address Calculator module, shown in
Figure 8, is used to calculate the next value for the
program counter based on the branch predictor’s
prediction.

| |

addr_mode branch_taken
-1 pc npc =
Branch
- imm Address branch_addr [~
Calculator
- rs1d

Figure 8: Branch Address Calculator Module

The addr_mode control signal can be either 0 or 1
and is used to specify how the address we will go to
should a branch be predicted is calculated. The
branch_taken input comes from the branch predictor
and specifies whether or not to branch. Table 5 shows
the two different methods of constructing the branch
address based on the addr_mode control signal and
Table 6 shows how the branch_taken input specifies
the next program counter values where 0 means no
branch and 1 means branch.

Table 5: addr mode Control Signal Function

addr_mode | Branch Address (branch_addr)

0 pc +imm

1 imm + rsld

Table 6: branch_taken Input Signal Function

branch_taken Next PC Value (npc)
0 pc+4
1 branch addr

3.4. EXECUTION STAGE

The EX stage consists of the ALU and Branch
Evaluator modules.

The ALU module, shown in Figure 9, is responsible
for executing the various logic operations performed
by the CPU. The logical operations supported by the
ALU are as follows: Addition, subtraction, bitwise
AND, bitwise OR, bitwise XOR, signed set on less
than, unsigned set on less than, logical left shift,
logical right shift, and arithmetic right shift.

alu_mode

1., AL

b alu_out p=

Figure 9: Arithmetic Logic Unit Module

The ALU takes in two operands, a and b, and
performs the logical operation specified by the hex
value of the 6-bit alu_mode control signal on them
and then outputs the result. Table 7 shows the hex
values corresponding to each operation.

Table 7: alu_mode Control Signal Function

alu_mode ALU Output (alu_out)
0x00 atb

0x20 a-b

0x07 a&b

0x06 alb

0x04 a”b

0x02 signed a < signed b
0x03 a<b

0x01 a << b[4:0]

0x05 a>>b[4:0]

0x25 signed a >>> b[4:0]




Despite only having ten operations, 6-bit values are
used for the ALU op-codes as it is easy to construct
the specified values in Table 7 directly from the

32-bit instruction, so no extra conversion is needed.

The Branch Evaluator module, shown in Figure 10, is
used to properly evaluate conditional branch
instructions to check against the branch predictor’s
prediction.

|
branch cond
= alu_out
Branch
Evaluator

act_taken =

Figure 10: Branch Evaluator Module

The branch_cond control signal ranges from 0 to 3
and specifies the current instruction’s branch
condition. For instructions with conditional branches,
the ALU is used to evaluate the conditional so the
ALU output is used to determine the correct action to
take. Table 8 shows the branching types specified by
the branch_cond control signal.

Table 5: branch_cond Control Signal Function

branch_cond act_taken Corresponding
Conditional

0 0 Never Branches

1 lalu_out Branch <, Branch
1=

2 ~lalu_out Branch >, Branch

3 | Always Branches

3.5. MEMORY STAGE

The MEM stage consists of the Data Cache module,
shown in Figure 11, which is a connection module
that contains the Data Cache Manager and L1 Data
Cache modules.

mem_busy mem_response_data _l-

={ dcache_en response_data

={ dcache rw

Data
={ data_mode Cache isBurst p=
=1 request_address wEn p—
= write_data rEn p=—
cache_clk rstn_h

| |
Figure 11: Data Cache Module

The Data Cache Manager module, much like the
Instruction Cache Manager module, serves as a signal
translation layer between the CPU, memory, and, in
this case, the L1 Data Cache. The Data Cache
Manager’s primary function is to convert memory
requests from the L1 Data Cache into the correct
format for AMBA.

The L1 Data Cache is 4KiB in size and is 2-way
associative, with a look-through read policy,
write-back write policy, and a least recently used
replacement policy. The block size of the cache is 4
bytes since our words are 32 bits, and with 2-way
associativity, the cache contains 512 sets, each
containing 2 32-bit blocks.

Notably, the data_mode input can be used to specify
the number of bytes to write to a memory address. A
data_mode value of 0 overwrites the least significant
byte of the data at the specified memory address with
the least significant byte of the input data, a
data_mode value of 1 does this for the least



significant 2-bytes, and a data_mode value of 2
overwrites the entire 4-byte word.

Since the L1 Data Cache has a write-back write
policy and not a write-through write policy, the L1
Data Cache handles all of the logic related to the
data_mode input so that no extra logic needs to be
added to the AMBA memory control. The L1 Data
Cache only sends the resulting final 4-byte word of a
write operation to memory, so from the memory’s
perspective all writes are the same size, a full word.

3.6. WRITE BACK STAGE

The WB stage consists of the General Purpose CPU
Registers module, which it shares with the ID stage
and as such has already been covered. The ID stage
portion of the module is reading from the specified
first and second registers while the WB stage portion
is writing to the specified destination register.

3.7. BRANCH PREDICTION AND CONTROL

The modules that make up the system for branch
prediction and branch control are the Pipeline Reset,
Branch Predictor, and Branch Manager modules. It
should be noted that the Branch Address Calculator
and Branch Evaluator nodules are also a significant
part of the branch prediction and control system but
have definite pipeline stages they belong to, unlike
the other branch modules.

The Pipeline Reset module, shown in Figure 12, is
what provides the input signal for the Program
Counter of what the next execution address is. It is
also responsible for flushing the entire pipeline back
and resetting it back to the proper next execution
address following a branch prediction mistake.

flush npc_corr
=] rstn_out . .
- Pipeline
Reset
= "Pe Module npc_in =

Figure 12: Pipeline Reset Module

The flush and npc_corr lines come from the Branch
Manager module, with the flush line indicating that a
pipeline flush needs to be executed and npc_corr
being the correct next execution address for the
mistaken prediction. If the flush line is set the
Pipeline Reset module will pull the rstn line low,
resetting the relevant modules, and then pass the
npc_corr value to the program counter.

When the branch prediction result is correct, so there
is no need to flush the pipeline, the Pipeline Reset
module simply passes the next execution address
received from the Branch Address Calculator module
onto the Program Counter.

The Branch Predictor module, shown in Figure 13,

handles the branch prediction logic for the CPU. It is
a 2-bit predictor where the predicted branch outcome
only changes after two incorrect predictions in a row.

| | |
clk rstn_h

branch_cond

< branch_occr pred_taken =

Branch

Predictor
act_taken =

branch_taken
T

Figure 13: Branch Predictor Module

This module is a combination of combinations and
sequential logic, with a 2-bit branch_occr control
signal used to specify if a prediction is needed for the
current instruction, where 0 means the instruction
never branches, 1 means it always branches, and 2
means its a conditional branch and a prediction is
needed. The way the branch occr control signal is
setup means that the most significant bit specifies
whether or not a prediction is needed with the least
significant bit specifying whether or not an
instruction not needing a prediction does not branch
or branches.

Combinational logic is used to set the branch_taken
output according to the branch_occr control signal. If
the most significant bit of branch_occr is not set, the
branch_taken output is just set to the least significant



bit of branch_occr. If the most significant bit is set,
the branch_taken output is set to the predicted result,
which is determined by sequential logic.

Two 1-bit registers are used by the sequential logic
system to make a branch prediction. One register
stores the current prediction value, curr_pred, and the
other stores whether or not the previous prediction
was incorrect, incorrect_pred.

The pred_taken and act_taken inputs, along with the
branch_cond control signal come from the EX stage
and are used to determine whether or not the previous
prediction was incorrect and if so whether or not the
current prediction value needs to be changed. The
pred_taken signal is the predicted branching result for
the instruction that just moved out of the EX stage to
the MEM stage while the act_taken input is the
correct evaluated branching result for that same
instruction. The branch_cond control signal ranges
from 0 to 3 with 0 meaning the instruction never
branches, 1 and 2 corresponding to different
conditional branches, and 3 meaning the instruction
always branches. The branch_cond control signal is
used rather than the branch_occr control signal since
the branch_occr control signal is set according to the
instruction that just moved out of the ID stage into
the EX stage which a prediction is currently being
made for, while the branch_cond control signal is set
according to the instruction that just moved out of the
EX stage in the MEM stage which is the previous
instruction evaluated by the branch predictor and so
the one that has had its conditional properly evaluated
and so can be checked.

For the Branch Predictor, a bitwise XOR is
performed on the branch_cond control signal to
determine if a prediction was made for the previous
instruction. This operation will result in 0 for
branch_cond values of 0 and 3, the cases where no
prediction was made, and 1 for branch cond values
of 1 and 2, the cases where a prediction was made. If
it is determined that no prediction was made for the
previous instruction, the curr_pred and incorrect pred
register values are kept the same. If it is determined
that a prediction was made for the previous
instruction, the pred_taken and act_taken XORed
together to check whether or not they are the same. If
the resulting value is 0, the two inputs are the same

meaning the previous prediction was correct; as such
the curr_pred register is left unchanged and the
incorrect pred register is reset to 0. If the resulting
value is 1, the two inputs are not the same meaning
the previous prediction was incorrect and what
happens next depends on the current value of the
incorrect_pred register. If the incorrect pred register
is 0, it is set to 1 and the curr_pred register is
unchanged. If the incorrect_pred register is 1, the
curr_pred register is set to the opposite of its current
value and the incorrect pred register is unchanged.

An important note is that upon switching the
prediction value the incorrect pred register is not
reset to zero since if the next prediction is also
incorrect, that still counts as having two incorrect
predictions in a row. The result is that for n incorrect
predictions in a row, the prediction value is flipped
n-1 times rather than n/2 times.

The Branch Manager module, shown in Figure 14, is
responsible for alerting the Pipeline Reset module
that the pipeline needs to be flushed and providing
that module with the correct next execution address.

clk rstn
npc P
Branch
Manager flush |
pred_taken pred_pc pred_addr act_taken
T

Figure 14: Branch Manager Module

Much like with the Branch Prediction module, the
Branch Manager module uses the pred taken and
act_taken inputs to determine if an incorrect
prediction was made. If the two inputs are not equal,
meaning an incorrect prediction was made, and the
internal restart register is not set, the flush output is
set high and the npc output is set depending on the
act_taken input. Table 6 shows the npc output values.



Table 6: act_taken Input Signal Function

act_taken npc
0 pred pc+4
1 pred_addr

The pred_pc input is the program counter value for
the instruction we are checking the prediction for and
the pred_addr input is the branch address for that
instruction. Act taken gives the correct result of the
conditional branch so determines whether we reset to
the next sequential address or to the branch address.

If the pred_taken and act_taken inputs are equal, or
the restart register is set, the flush output is set low
and the npc output is set in the same way but using
the pred_taken input instead of the act taken one.
The npc output here could be anything though as it
only goes to the npc_corr input of the Pipeline Reset
module which only reads that input if the flush line is
set, which it isn’t in this case. The reason for not just
setting the npc output to some constant here is in case
the value is ever needed by some module added in
future iterations or by an improved version of the
Pipeline Reset module.

The restart register is set high upon a reset of the
module and then set low the next clock cycle, with it
serving to prevent an accidental flush after a reset.
After a reset both pred taken and act_taken are
designed to end up low, preventing a flush, but if the
clock is pulsed too quickly after a reset the act taken
signal may not get set low in time since it is not set
directly by a register but rather by the combinational
logic of the ALU and Branch Evaluator modules. If
the reset occurred when the act taken signal was set
high this could pose a problem. Since the pipeline
will never actually need to be flushed on the first
clock cycle after a reset anyway, adding the restart
register has no real downside and so was determined
to be worth it to prevent this potential problem.

3.8. HAZARD DETECTION
When the instruction in the IF stage poses a

read-after-write or write-after-write hazard for the
CPU registers, we need to stall that instruction until

the instruction it depends on exits the pipeline. A
similar rule is needed for branching hazards since we
could potentially load an errant instruction into the IF
stage. As such, combinational logic in the General
Control module is used to check if the instruction in
the IF stage is a branching instruction or otherwise
dependent on any instruction currently in the other
stages of the pipeline. If there is a branching
instruction or dependency, the General Control
module’s internal hazard register is set and a NOP is
inserted into the pipeline to stall execution;
otherwise, execution continues as normal with the
hazard register not set.

The hazard detection logic is implemented
combinationally and not sequentially since the
hazardous instruction in the IF stage needs to be
stalled in that stage for as long as the hazard is
present. Since instructions advance along the pipeline
at the rising edge of the clock, the logic to stall the
instruction must execute before the next clock pulse.

The hazard detection system does not stall for
write-after-read hazards since the design has no
instruction reordering meaning there is no way for a
subsequent instruction to read data from the registers
before the proceeding instruction can write the data.
The system also does not consider memory hazards
since only the instruction in the MEM stage can
access memory, and without reordering, the initial
instruction will always finish working with memory
before the dependent instruction can access memory.

It should be noted that a read-after-write memory
hazard could occur if the area of memory storing the
current program is written to. An instruction could
modify the value at a sufficiently close execution
address such that the instruction at that address is
fetched from memory before it can be overwritten.
However, since we are not currently supporting
self-modifying code, detecting read-after-write
memory hazards is unnecessary.

Table 7 shows the different instruction types and the
potential hazards they pose when in the IF stage. The
data hazards only concern the CPU registers and not
memory for the reasons mentioned above.



Table 7: Potential Hazards Per Instruction Type at IF
Stage

10

,11,12,13, U, J) and (( ID_ins[11:7] == ins[11:7] ) or ( ID_ins[11:7] == ins[24:20] ) or ( ID_ins[11:7]

Instruction Read Write Branch
Type After After Hazard
Write Write
R Yes Yes No
I Type 1 Yes Yes No
I Type 2 Yes Yes No
I Type 3 Yes Yes Yes
S Yes No No
B Yes No Yes
U No Yes No
J No Yes Yes
NOP No No No

Table 8 shows the potential hazards the various
instruction types pose when later in the pipeline.

Table 8: Potential Hazards Per Instruction Type at

Later Stages

Instruction Read After Write After
Type Write Write
R Yes Yes

I Type 1 Yes Yes

I Type 2 Yes Yes

I Type 3 Yes Yes

S No No

B No No

U Yes Yes

J Yes Yes
NOP No No

The hazard control system uses the logic shown in

Figure 15.

== ins[19:15] ))and ( ID_ins[11:7] !=0)
= hazard =1

If (EX_ins[6:0] ==R, 11,1213, U, J) and (( EX_ins[11:7] == ins[11:7] ) or ( EX_ins[11:7] == ins[24:20] ) or ( EX_ins[11:7]

== ins[19:15] ))and ( EX_ins[11:7] !=0)
= hazard =1

R, 11,12,13, U, J) and (( MEM_ins[11:7] == ins[11:7] ) or ( MEM_ins[11:7] == ins[24:20] ) or

ins[19:15] ))and ( MEM_ins[11:

If (WB_ins[6:0] ==R, I1, 12, 13, U, J) and ((WB_ins[11:7] == ins[11:7] ) or (WB_ins[11:7] == ins[24:20] ) or (WB_ins[11:7]
== ins[19:15] ))and (WB_ins[11:7] !=0)
= hazard =1

* Else
hazard =0

Figure 15: Pseudo-Code for Hazard Detection Logic

As shown in Figure 15, the hazard control logic first
looks for a potential branch hazard, and so checks
whether or not the instruction in the IF stage is an I
type 3, B, or J instruction. Provided the hazard bit is
not set, meaning this instruction has just been loaded
into the IF stage, the hazard bit is set and a nop is
inserted into the pipeline. The hazard bit is checked
to ensure that the branch instruction is only stalled for
a single clock cycle, and not forever.

If no branch hazard is found, the hazard control logic
then moves to check if the instruction in the IF stage
poses a potential data hazard, meaning it checks for
R, I type 1, I type 2, I type 3, S, B, U, and J type
instructions. When such an instruction is found, each
stage is checked for any R, I type 1, I type 2, I type 3,
U, or J type instructions whose destination register
matches any of the accessed registers in the IF stage
instruction. If such a match is found, the hazard bit is
set and a nop is inserted, ensuring that the pipeline is
stalled until the offending instruction exists the
pipeline. If no hazards are found then the hazard bit is
set to zero and pipeline execution resumes as normal.

3.9. CONTROL SIGNALS

The General Control module, shown in Figure 16, is
also responsible for decoding instructions and
sending out the various module control signals
explained in the above sections for the instruction at
each stage at the right times.

Figure 16: General Control Module



Tables 9 through 13 show the control signals for the

Table 11: EX Control Signals
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IF, ID, EX, MEM, and WB .stag?s respe.ctlvely, and Instruction | alu mode branch comd
how they are set for the various instruction types. Type - -
Table 9: IF Control Signals R EX ins[31:25]+ 0
. . EX ins[14:12]
Instruction Type immode —
1 Type 1 IfEX ins[14:12]== | 0
R 0 0x5, alu_mode
=EX ins[31:25] +
1 Type 1 1 EX ins[14:12],
otherwise alu_mode
I Type2 1 — EX_ins[14:12]
[ Type 3 ! I Type 2 0 0
S 2 I Type 3 0 3
B 3 S 0 0
U 4 B IFEX ins[14:12] = | If
I 5 4 or 5 alu_mode = EX ins[14:12]
0x02, if ==1lordor6
EX ins[14:12] == branch_cond =
NOP 0 or 7 alu_mode = 1, else
0x03, otherwise brach cond =2
Table 10: ID Control Signals alu_mode = 0x20
Instruction | addr_ | branch | a_sel b_sel U 0 0
Type mode | _occr
J 0 3
R 0 0 0 0
NOP 0 0
1 Type 1 0 0 0 1
I Type 2 0 0 0 0
I Type 3 1 1 1 2
S 1 0 0 0
B 0 2 0 0
U 0 0 ID ins[5:4] | 3
J 0 1 1 2
NOP 0 0 0 0




Table 12: MEM Control Signals

Instruction | data_mode dcache_ | dcache_
Type rw en
R 0 0 0
1 Type 1 0 0 0
I Type 2 0 0 1

I Type 3 0 0 0
S MEM ins[14:12] | 1 |
B 0 0 0
U 0 0 0
J 0 0 0
NOP 0 0 0

Table 13: WB Control Signals

Instruction wbs wbe
Type

R 3 1
1 Type 1 3 1
I Type 2 WB ins[14:12] 1
I Type 3 3 1
S 0 0
B 0 0
U 3 1
J 3 1
NOP 0 0

3.10. CLOCKS AND RESET LINES

Two different clock lines are used in the core design,
clk and cache clk. The cache clk line is used for the
CPU registers and caches while the clk line is used
for everything else. The two clock lines are needed
since the registers and caches need to wait for the
latches to update before they themselves can update.
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As such, the cache clk is inverted from the clk line
so that in-between each rising edge of the clk line is a
rising edge of the cache clk line.

The core also has two different but related reset lines,
the rstn line and the rstn_h line, both of which are
active low. The rstn_h line is the master reset line and
whenever it is pulled low the rstn line will also be
pulled low; however, pulling the rstn line low will not
pull the rstn_h line low. This reset line system is
needed since the pipeline is flushed via the rstn line
but the registers in the Branch Predictor, Instruction
Cache, Data Cache, and General Purpose CPU
Registers modules need to maintain their values after
a pipeline flush to properly execute the correct
post-branch instruction. These modules, however,
still need to have a way to be reset so they use the
master rstn_h line which is used when one wants to
reset the entire state of the core such as during
initialization.

3.11. CONNECTION MODULES

Six higher-level connection modules were designed
to simplify the process of connecting and testing
related modules. These modules are the IF connection
module, ID connection module, EX connection
module, MEM connection module, Branching
Control connection module, and the Top Level
module. Figure 17 shows the connection module each
module belongs to, with red being IF, orange being
ID, yellow being EX, green being MEM, and purple
being Branch Control. The General Control module
and MEM/WB latch are given their own colors to
signify they belong to no connection module and are
instead directly connected in the Top Level module
alongside the connection modules.

Figure 17: CPU Block Diagram Connection Modules



4. IMPLEMENTATION WORK

A given component's completion level is broken
down into 5 categories. The first category is “needs to
be outlined” which means a component exists in
name only and has not yet been fully designed. The
second category is “needs to be implemented” which
indicates that a component has been designed and
outlined but has not yet been implemented in
SystemVerilog nor had its functionality tested. The
third category, “needs to be connected”, is for
components that have been implemented and tested
on their own, but belong to a higher-level module that
has yet to be implemented and tested itself. The
fourth category is known as “connected” and
indicates that the higher-level module containing the
component has been implemented and tested,
meaning the individual component has had its
functionality verified when in concert with other
related components. Modules in the “connected”
category still need to be tested as a part of the
complete CPU, however. Finally, the fifth category
“complete” is for modules that have been tested as a
part of the complete CPU and determined to operate
correctly.

Figure 18 shows the Core Design and
Implementation GitHub project which is used to track
the progress of core related components.

Figure 18: Core Design and Implementation GitHub
project

Figure 18 breaks the categories down further to
indicate whether or not a given component is actively
being worked on.

Currently, the components that are left to outline are
the L1 Instruction Cache module, Instruction Cache
Manager module, Instruction Cache connection
module, IF connection module, and the Top Level
module.
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The components that are outlined but not yet
implemented and tested are the L1 Data Cache
module, the General Control module, the Data Cache
connection module, and the MEM connection
module.

The components that have been implemented and
tested but are left to be connected within higher-level
connection modules are the EX/MEM Latch module,
the MEM/WB Latch module, the Program Counter
module, the Data Cache Manager module, the ID
connection module, the EX connection module, and
the Branching Control connection module.

Finally, the components that have been connected but
are waiting for the entire CPU to be implemented to
ensure their full functionality are the IF/ID Latch
module, the CPU General Purpose Registers module,
the ID/EX Latch module, the ALU module, the
Branch Address Calculator module, the Branch
Evaluator module, the Pipeline Reset module, the
Branch Predictor module, and the Branch Manager
module.

5. CONCLUSIONS

The initial goal when the NYU Processor Design
Team started was to have a functional taped-out SoC
in our hands within three semesters, meaning by the
end of Spring 2024 since the team started in Spring
2023. Needless to say, that goal was not met, with
significant work left to be done on the CPU core as
well as on other SoC components such as AMBA.

Despite that, significant progress was made on the
core. The design is complete apart from the
instruction cache, and most of the modules have been
implemented and tested.

6. RECOMMENDATIONS

Once all of the implementation work is completed,
significant testing needs to be done before tapeout.
Ideally, this includes synthesizing and testing the full
design on an FPGA, but given the idiosyncrasies of
timing on FPGAs as well as the size of the FPGA that
would be needed to simulate the full SoC, a more
realistic option would be to test individual



subcomponents of the SOoC on FPGAs rather than the
entire thing.

There are also further optimizations that can be done
for various components of the CPU core, particularly
the branch prediction and hazard detection systems.
Various branch prediction methods should be tested
to determine the optimal one given the design of the
CPU and the types of programs expected to be run on
it. In terms of the hazard detection logic, the system
currently stalls for both read-after-write and
write-after-write data hazards, but given that the only
stage in which an instruction writes to a register is the
WaB stage, it may be entirely unnecessary to stall for
write-after-write data hazards. This is one of many
potential optimizations that could be made to the
hazard detection system but that requires thorough
testing to ensure it does not cause any issues.
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8. APPENDIX

The SystemVerilog modules, C++ test code, and
documentation for the core design can be found at the
NYU Processor Design Team nyu-core GitHub
repository linked here:

https://gith m/NYU-Pr r-Design/nyu-cor
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