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Abstract

Register Transfer Level (RTL) design has classically been the domain of commercial tools orches-
trated via ad hoc scripts and firm-specific tooling. Decades of work in the software world on
toolchain orchestration, combined with rising interest in the open hardware movement, have
made it possible to construct standardized workflows entirely free of commercial black boxes. This
report details the RTL verification system used by the New York University Processor Design Team,
which has been developed by the team since September 2023.
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1 Background

Register Transer Level (RTL) design1 refers to the phase of the hardware implemen- 1Bening, L. & Foster, H. Principles of
Verifiable RTL Design isbn: 0-7923-
7788-5 (Jan. 2002).

tation process where designers describe the flow of data between registers and the
logical operations performed on that data. The RTL design phase bridges the gap
between high-level architectural design specification, and low-level gate synthesis
and layout.

A strong understanding of RTL design,
HDLs, or hardware generally is not
essential to understanding this paper.
Suffice to say that there is a style of
source code that describes the opera-
tion of a piece of hardware, and that
testing this source code via simula-
tion prior to the expensive process of
fabricating physical devices is a high
priority for hardware designers.

Hand-in-hand with RTL design is verification, the process of ensuring that an
RTL design meets the requirements of the specification. Verification has many phases,
spanning software simulation all the way into post-fabrication of microelectronic
designs. At the RTL stage, verification is focused on the logical simulation of individual
components as well as integrated devices.

The construction of these simulations, starting from the hardware description lan-
guage (HDL) source code of the RTL design, integrating test drivers and a simulation
engine, and finally producing outputs such as waveforms or test reports, is the job of
several disparate software tools. The integration of these tools into a comprehensive,
user-facing interface is the responsibility of the toolchain.

1.1 History of NYU ProcDesign

The current effort at New York University has its roots in the System-On-Chip
Extension Technologies (SoCET) team at Purdue University.∗ SoCET’s goals are ∗The brainchild of Dr. Mark Johnson,

SoCET has been producing high-
quality microelectronic engineers
straight out of undergrad for over a
decade.

pedagogical, the team achieves ABET outcomes for students while also providing an
interface to modern hardware industry tools and practices.2

2Swabey, M. A. & Johnson, M. C. Sat-
isfying ABET criterion using an indus-
trial Microelectronic Skills Incubator
in 2015 IEEE International Conference
on Microelectronics Systems Education
(MSE) (2015), 28–31.

The NYU Process Design Team (ProcDesign) was envisioned as an export of
the system pioneered at Purdue.† However, differences in resources and experience

†The team was originally proposed
to NYU by the author following a
two month research program on the
SoCET team.

levels naturally led to a divergence in philosophy. and NYU ProcDesign has instead
developed a heterodox approach to RTL design. Where the requirements of ABET
and needs of industry have driven the SoCET process, ProcDesign has organized
around a different set of principles:

⋄ Using highly automated, portable, design and verification workflows
⋄ Applying modern software integration techniques to RTL design
⋄ Development of skills useful to both hardware and software industries

While the output product of both teams is similar‡, the ProcDesign team’s isolation ‡SoCET has a long history of successful
tapeouts with its AFTx chip series,
ProcDesign is moving towards its first
tapeout in late 2025.

from industry norms has produced several novel methodologies especially in the
realms of verification, package management, and debugging of RTL design work.

Today ProcDesign has dedicated RTL codebases for a RISC-V core, various bus
architectures, and several peripherals§ all designed, verified, and packaged using the §ProcDesign GitHub Organization:

https://github.com/
NYU-Processor-Design

principles centered by the unique circumstances and goals of the ProcDesign team.

https://github.com/NYU-Processor-Design
https://github.com/NYU-Processor-Design
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1.2 Traditional RTL Toolchain Design

Traditional RTL verification toolchains, especially in academia, are ad hoc construc-
tions around a handful of commercial simulation and verification solutions.∗ Elec- ∗As a practical matter, the industry is

dominated by "the big three":
⋄ Cadence’s NCSim
⋄ Siemens’ Questa
⋄ Synopsys’ VCS

tronic Design Automation (EDA) vendors supply various simulator products with
differing feature sets and interfaces, and it is up to designers to build toolchains
compatible with these systems.

The common form of this tooling is frequently cobbled-together scripts written
in shell, Make, Perl, or Python depending on the particular affinities of their author.

The following listing demonstrates a typical Makefile in this tradition:

Listing 1. Makefile code from
SoCET uart_debugger, circa 2013.

ifeq ($(shell hostname),ecegrid-lnx.ecn.purdue.edu)
COMPILE_V := gridtest vlog
SIMULATE := gridtest vsim

else
COMPILE_V := vlog
SIMULATE := vsim

endif
# ...
sim_source:
@rm -rf source_work
@$(LIB_CREATE) source_work
@$(COMPILE_V) -work source_work $(AHB_FILE) > source.comp
# ...

# Uncomment below if you want run the simulation the normal way
# and have it run the specified .do file
# @$(SIMULATE) -t ps -do s_waves.do source_work.$(TB_ENTITY)

# This way just runs it like normal and only sets up the simulation
# but doesn’t run it or add any waveforms
@$(SIMULATE) -i -t ps source_work.$(TB_ENTITY)

This example has been pared down
from the original to include only the
most relevant sections of code.

This code is in no way an exhaustive
example, it is from a small project
with no dependencies, and toolchain
challenges scale with the complexity
of the design being implemented.

This example demonstrates several of the weaknesses of the ad hoc approach, namely:
⋄ A reliance on install-specific minutia, here demonstrated by the detection and

hardcoding of configuration information for a specific Purdue build server
⋄ Hardcoding of source and build directory locations into the toolchain
⋄ Toolchain configuration via manually modifying the toolchain files, such as by

commenting and uncommenting specific lines
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1.3 Team Requirements

The ProcDesign team is primarily composed of second and third year undergraduate
students,∗ typically coming out of their first formal course of instruction in computer ∗Most students at this stage will be

compiling and running code with
some variation of:
g++ *.cpp && ./a.out

architecture, with minimal exposure to typical software or hardware development
workflows. This posed an interesting challenge and oppertunity for the ProcDesign
technical leadership, as the team had little relevant experience, but also no attachment
to traditional methodologies.

Several requirements for the team’s toolchain were identified:

ProcDesign also lacked anything
resembling comparable funding or
industry support enjoyed by other
efforts. This shaped requirements
equally, if not more so, than the inex-
perience of its team members.

⋄ Portability, able to run on any student’s available hardware
⋄ Featureful, supporting testing, waveform generation, package management

and any other development needs met by traditional workflows
⋄ Robustness, reasonably able to adapt to a given development environment, be

that changes in compiler, tool paths, install locations, etc
⋄ Simplicity (of use), students needed to be trained on how to use and expand on

the toolchain in a matter of weeks
Notably, simplicity of implementation was not considered a priority.† ProcDesign †This has been a point of some con-

tention, as the techniques leveraged
by the toolchain requires a broad
familiarity with C++, CMake, Sys-
temVerilog, and vcpkg. Having even a
single teammember familiar with all
the involved technologies is a sustain-
ability challenge for the team.

then (as now) considered it acceptable that development and maintenance of the
toolchain workflow could be relegate to a few experts, so long as all members were
able to productively make use of it.

Additionally, the requirements inadvertently supported a "rapid-iteration" style
of development. As no access to a specialized build server would be required, new
ideas and components could be built and tested with relatively low overhead by the
ProcDesign team.

1.4 Prior Art

FuseSOC3 represents the state-of-the-art in open source toolchain development for 3Kindgren, O. A Scalable Approach
to IP Management with FuseSoC in
2019 Workshop on Open Source Design
Automation (OSDA) (2019).

RTL design. It met some, but not all, of the requirements of the ProcDesign team.
Briefly, FuseSOC represents a natural evolution of ad hoc Python scripts, itself derived
from the homegrown build system developed for the OpenRISC Reference Platform.

FuseSOC aims to solve the vendoring‡ problem. The nature of the OpenRISC ‡Vendoring is a term originated by the
Ruby community ~2006 and popular-
ized by the Go language documenta-
tion, it refers to the wholesale copying
of dependency source code directly
into a project. The term derives from
the destination folder for this code,
the "vendor" folder.

project was such that it rapidly accumulated a large number of slightly different RTL
components, with individual codebases never propagating changes and improvements
to a given component to each other. FuseSOC solves this problem by allowing for the
construction and distribution of catalogs of "cores", individual RTL components.

FuseSOC intentionally does not treat RTL components as merely HDL source
code collections, it has a verbose format that describes the requirements for each
component§ when used with a particular EDA suite. Notably, each individually §By "component" we are speaking to

the more colloquial idea of a "top
level", an HDL module which exists at
the "top" of the hierarchy and deter-
mines the input and output signals to
the overall system.
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testable or integrable component must have its own FuseSOC metadata file describing
the mechanisms supported by said component.

Listing 2. Partial FuseSOC core
description file from [3]

CAPI=2:
name : ::i2c:1.14
filesets:
rtl_files:
files:
- rtl/i2c_byte_ctrl.v
- rtl/i2c_def.v:

is_include_file : true
- rtl/i2c_top.v

file_type : verilogSource
tb:
depend:
- ">=vlog_tb_utils-1.0"

files:
- tb/tst_bench_top.v:
file_type : verilogSource

targets:
default:
filesets : [rtl_files]

sim:
default_tool : icarus
filesets : [rtl_files, tb]
toplevel : tst_bench_top

This is for a simple i2c module, con-
sisting of only three source files.

Notably, the sim target only has a
single toplevel module, and does not
present a straightforward abstraction
for integrating non-RTL source files or
workflows.

This granular approach allows FuseSOC to maintain support for fifteen different
EDA suites, but makes it rather verbose and demanding for component maintainers.
SoCET has experimented with FuseSOC but frequently uses build system shortcuts
to avoid this verbosity, and ProcDesign has avoided FuseSOC entirely.∗ ∗Additionally, FuseSOC is a niche

toolchain in a niche industry. As
ProcDesign aims to arm students with
skills that will find wide applicabil-
ity in either software or hardware
endeavors, FuseSOC was a poor fit.

When exchanging RTL components between labs using different EDA suites,
FuseSOCs wide support base is a major advantage. As ProcDesign is building and
testing components on student machines with no access to commercial EDA suites,
this advantage could not be leveraged and the overhead of teaching the FuseSOC
system was viewed as unworkable.



2 The NYU System

Having judged existing systems unsuitable, the ProcDesign team built their system by
way of adapting existing software toolchain approaches to the needs of a hardware
workflow. The major components∗ used by ProcDesign are: ∗The criteria for component selection

were popularity (CMake), availability
(Verilator, free, and the only software
in its niche), and the preferences of
the author (vcpkg, Catch2).

⋄ CMake, for overall toolchain orchestration
⋄ Verilator, as the RTL simulation engine
⋄ vcpkg, for package management and distribution
⋄ Catch2, as the test interface and for generation of reports and artifacts

2.1 Overview

The following illustrates the relationship of the major processes involved in the
ProcDesign toolchain in its typical configuration.

Figure 2.1.
An illustration of the major pro-
cess components of the ProcDesign
toolchain

Those familiar with modern C++
development workflows will note
that, absent the Component HDL,
Verilator, and Waveforms blocks,
this is a standard C++ development
toolchain.

A given ProcDesign repository is divided into an HDL source code folder, typi-
cally named rtl, and a mixed HDL and C++ test driver folder, typically named dv
(design verification). These are the primary inputs to the toolchain. Additionally,
a vcpkg.json file describes dependencies needed from outside the current project
(HDL, C++, or other code).

The toolchain processes these files appropriately to produce a final simulation
program. It is possible to directly run this program and produce desired output
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files, but this is usually delegated to CMake’s dedicated test runner, known as CTest.
Running the simulation binary will produce, at a minimum, a test report, and possibly
waveforms or coverage information if requested.

2.2 Verilator

Verilator4 is a package which produces C++ models of SystemVerilog∗ RTL designs. 4Snyder, W. Verilator version 5.024.
Veripool, Apr. 5, 2024.

∗At this point it is impossible not to
mention that there are two major
HDLs in use for RTL design. These are
SystemVerilog and VHDL. ProcDesign
uses SystemVerilog and some other
minor HDLs, but never VHDL.

Depending on the nature of the model, these can either be compiled directly into a
simulation program or linked into a larger C++-based test program.

In traditional RTL verification workflows, the verification tests are themselves
written in an HDL dialect. This makes some sense, as simulators understand HDL
syntax and hardware engineers are competent in authoring HDL code. These test
components are called "testbenches", and when using such a construct Verilator can
produce a simulation program of the testbench directly.

However, the domain of HDLs is declaratively described physical hardware.
Pure HDLs are closer to markup languages than programming languages, and lack
many of the advanced concepts that make programming languages so convenient
for describing programmatic behavior. For this reason, it can be preferable to write
verification tests in a dedicated programming language instead of an HDL.

Supporting this, Verilator can take an RTL component design† and create a C++ †In the context of testing this compo-
nent is typically referred to as the
Device Under Test, or DUT, and
this convention is used throughout
ProcDesign tooling and documenta-
tion.

model of just the component, without any surrounding testbench or other simulation
code. This C++ model can then be manipulated by normal C++ code as part of a test
program, as demonstrated here:

Listing 3. A simple ALU-like device

module AluDevice (
input [1:0] op,
input [7:0] a,
input [7:0] b,
output [7:0] out

);

assign out = op[1] ? (op[0] ? a | b : a & b) : (op[0] ? a - b : a + b);

endmodule

This example is from the second of the
on-boarding labs performed by new
ProcDesign teammembers.

Listing 4. A C++ testbench for the
AluDevice

The V prefix for the AluDevice type-
name is a default Verilator convention,
but the type can be configured to be
named anything.

int main() {
VAluDevice DUT;
for (int op = 0; op < 4; DUT.op = ++op) {
for (int a = 0; a < 256; DUT.a = ++a) {
for (int b = 0; b < 256; DUT.b = ++b) {
DUT.eval();
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switch(DUT.op) {
case 0:
if((DUT.a + DUT.b) != DUT.out) return 1; break;

case 1:
if((DUT.a - DUT.b) != DUT.out) return 1; break;

case 2:
if((DUT.a & DUT.b) != DUT.out) return 1; break;

case 3:
if((DUT.a | DUT.b) != DUT.out) return 1; break;

}
}

}
}

}

The call to DUT.eval() advances the
state of the simulation. This simple
test progam returns zero if the output
of the DUT is correct and one if the
output is incorrect.

Verilator can optionally add waveform generation and coverage information∗ to ∗The use of these capabilities normally
requires some intervention by the
test program, but for ProcDesign it is
handled transparently by the team’s
testing utility libraries.

the C++ model if requested. These incur minor performance penalties and so are left
off when rapidly iterating on a design or testing strictly for operational success, but
are essential to debugging and tracking the health of testing infrastructure.

Unique among the ProcDesign toolchain, Verilator poses a portability challenge.
While Verilator can compile cleanly under Microsoft Windows and MSVC, it has
Unix-style path assumptions built into its frontend that make using Verilator on
Windows functionally impossible. For now, ProcDesign teammembers on Windows
run the toolchain via WSL, but fixes for Verilator’s pathing assumptions are being
explored.

2.3 CMake

CMake5 is a tool originally developed for managing source code build processes, but 5Kitware, Inc. CMake version 3.29.3.
May 7, 2024.has evolved into a general system for managing tooling orchestration. CMake is a

self-described "buildsystem generator", meaning that it determines the nature and
order of jobs that must be performed,† but delegates the act of running said jobs to a †Put another way, the output of CMake

is not the result desired by the user,
but rather a list of instructions that
will produce the result desired by the
user. This list is then handed off to
an associated tool that the list was
designed for.

dedicated buildsystem utility such as Make or Ninja.
CMake serves as the primary interface for most verification operations performed

by ProcDesign during the development process. CMake, as used by ProcDesign, can
bootstrap most elements of the toolchain (with the exception of Verilator) without
intervention from the user. It handles the invocation of Verilator and linking of the
C++ model outputs into test simulation programs without burdening the user with
the particulars of how such a process is performed.

CMake also provides an interface for configuration of particular simulator build
settings, allowing elements like waveform generation and coverage information to
be toggled without resorting to manually editing toolchain files.
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The following listing demonstrates bootstrapping of vcpkg if the user has not
described another dependency provider and has not disabled bootstrapping of vcpkg
via the NYU_FETCH_VCPKG option:

Listing 5. Bootstrapping code from
the ProcDesign component template

option(NYU_FETCH_VCPKG "Fetch vcpkg if no toolchain is set" ON)

if(NOT DEFINED CMAKE_TOOLCHAIN_FILE AND NYU_FETCH_VCPKG)
include(FetchContent)
FetchContent_Declare(
vcpkg
GIT_REPOSITORY https://github.com/microsoft/vcpkg.git
GIT_TAG master
GIT_SHALLOW TRUE

)
FetchContent_MakeAvailable(vcpkg)
set(CMAKE_TOOLCHAIN_FILE
${vcpkg_SOURCE_DIR}/scripts/buildsystems/vcpkg.cmake
CACHE FILEPATH "Vcpkg toolchain file"

)
set(VCPKG_ROOT_DIR ${vcpkg_SOURCE_DIR} CACHE PATH "Vcpkg Root

Directory")
endif()

FetchContent is CMake’s native pack-
age management solution, but as seen
here it’s rather verbose. ProcDesign
uses it to bootstrap vcpkg, and then
allows vcpkg to bootstrap all other
dependencies from within CMake.

Options defined using the option() command can be controlled∗ via CMake command- ∗Manually invoking commands, CMake
or otherwise, is discouraged on the
ProcDesign team. These options are
typically configured via the user’s
development environment CMake
integration. For example, the VSCode
CMake Tools extension provides a
"cmake.configureSettings" parameter
to handle these options.

line arguments, the following would turn off vcpkg bootstrapping:

cmake . -DNYU_FETCH_VCPKG=OFF

ProcDesign convention is to group HDL source code into "libraries" which describe a
single component or group of related components. The following creates a library
named "module" and associates a single HDL source file with it:

Listing 6. Creating a library and
adding a SystemVerilog file to it

add_library(module INTERFACE)

nyu_add_sv(module
Module.sv

)

The nyu_* commands are specific
ProcDesign utilities for interfacing
with Verilator. These are explored
further in section 2.6.
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This RTL component can then be linked into a C++ simulation program using
code such as the following:

Listing 7. Linking together an RTL
component with a C++ testbench

option(NYU_GEN_TRACES "Generate FST traces from tests" OFF)

if(NYU_GEN_TRACES)
set(_traces_option TRACE_FST)

else()
set(_traces_option)

endif()

add_executable(tests)
target_sources(tests PRIVATE
Module.cpp

)
nyu_link_sv(tests PRIVATE module)
nyu_target_verilate(tests
TOP_MODULES Module
ARGS COVERAGE ${_traces_option}

)

Note that the generation of wave-
forms (here called "traces") is con-
trolled with a CMake option().

In contrast to FuseSOC, the
nyu_target_verilate() command
supports integrating multiple "top
modules" into a single testing simula-
tion.

Finally, CMake provides a framework for packaging∗ and distributing RTL com- ∗The intricacies of CMake packaging
are not within the scope of this report,
but an introduction to the concepts
can be found in [6].

ponents to be consumed by external projects. For ProcDesign, installing RTL files to
a CMake export is done via a single command:

Listing 8. Installing the module RTL
library to an export named project-
Targets

nyu_install_sv(
EXPORT projectTargets
TARGETS module
NAMESPACE nyu::
EXPORT_DEST ${CMAKE_INSTALL_DATADIR}/project
SV_DEST ${CMAKE_INSTALL_DATADIR}/project/rtl

)

2.4 vcpkg

vcpkg7 is a CMake-based package manager developed by Microsoft, ostensibly for 7Microsoft. vcpkg Jan. 11, 2024.

C/C++ dependency management, but functionally suitable for any CMake-based
toolchain regardless of the nature of the underlying dependencies.

Unlike CMake which has several custom commands implemented by the ProcDe-
sign team to extend it for use with HDLs, ProcDesign’s usage of vcpkg is entirely
ordinary. The team maintains a vcpkg "registry"†, a metadata collection that describes †The ProcDesign Registry: https://

github.com/NYU-Processor-Design/
nyu-registry

CMake-compatible packages available for installation.

https://github.com/NYU-Processor-Design/nyu-registry
https://github.com/NYU-Processor-Design/nyu-registry
https://github.com/NYU-Processor-Design/nyu-registry
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Each ProcDesign project has a vcpkg.json file that describes the dependencies
and other metadata of that project, such as the following for the NYU RISC-V core:

Listing 9. nyu-core’s vcpkg.json
file

{
"name": "nyu-core",
"version": "1.0.0",
"description": "NYU Processor Design’s Core Components Repo",
"homepage": "https://github.com/NYU-Processor-Design/nyu-core",
"maintainers": [],
"license": "CC0-1.0",
"dependencies": [
"nyu-cmake",
"nyu-util",
"catch2"

],
"vcpkg-configuration": {
"default-registry": {
"kind": "git",
"baseline": "326d8b43e365352ba3ccadf388d989082fe0f2a6",
"repository": "https://github.com/microsoft/vcpkg.git"

},
"registries": [
{
"kind": "git",
"baseline": "7a6b61ca47ca041f1c6558c649cbc2ddbf11d57a",
"repository": "https://github.com/NYU-Processor-Design/nyu-

registry.git",
"packages": [
"nyu-*"

]
}

]
}

}

Packages described in the depen-
dencies section will automatically
be installed and made available by
vcpkg.

The default registry is configured
to point to a Microsoft maintained
registry, which contains many useful
common packages for C++ develop-
ment.

This entry configures vcpkg to use the
NYU ProcDesign registry to provide
any packages with names starting
with nyu-.

The specifics of registry management,
portfile construction, and general
maintainership of vcpkg packages is
beyond the scope of this report. It is
sufficient to say that ProcDesign’s
usage of vcpkg is consistent with the
processes documented in vcpkg’s
reference materials with the exception
of the minor issue discussed here.

Because vcpkg is designed around C/C++ packages, it has heuristics that alert
maintainers of possible packaging errors relevant to C++. Of note for ProcDesign,
vcpkg will warn about empty an "include" folder, devoid of C++ headers. The only
minor divergence from standard vcpkg usage is disabling that alert with:

set(VCPKG_POLICY_EMPTY_INCLUDE_FOLDER enabled)

vcpkg is largely transparent when following ProcDesign conventions, as it is
automatically boostrapped and invoked by CMake in normal usage.
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2.5 Catch2

Catch28 is a popular C++ testing framework. As Verilator outputs C++ models of 8Hořeňovský, M. Catch2 version 3.6.0.
May 5, 2024.RTL designs, it is appropriate to use a C++-specific test framework to organize and

interface with tests exercising those models.∗ ∗Catch2 and the ProcDesign testing
utilities are comparable in purpose
to the traditional RTL verification
framework, "Universal Verification
Methodology" (UVM), which those
experienced with typical RTL design
practices will be familiar with.

Catch2 organizes operations into TEST_CASEs which can have arbitrary names
and tags associated with them. Each test case represents a standalone exercise of the
concept under test and can be run on its own, separate from the other test cases.

This example tests the previously described AluDevice using Catch2 following
ProcDesign conventions:

Listing 10. Testing the AluDevice
from Listing 3 using Catch2 and vari-
ous ProcDesign utilities

void test_op(uint8_t code, uint8_t(op)(uint8_t, uint8_t)) {
static auto& DUT {nyu::getDUT<VAluDevice>()};
DUT.op = code;
DUT.a = 0;
DUT.b = 0;

do {
do {
nyu::eval(DUT);
uint8_t result {op(DUT.a, DUT.b)};
REQUIRE(result == DUT.out);

} while(++DUT.b);
} while(++DUT.a);

}

TEST_CASE("Opcode 0, Addition") {
test_op(0, [](uint8_t a, uint8_t b) -> uint8_t { return a + b; });

}

TEST_CASE("Opcode 1, Subtraction") {
test_op(1, [](uint8_t a, uint8_t b) -> uint8_t { return a - b; });

}

TEST_CASE("Opcode 2, And") {
test_op(2, [](uint8_t a, uint8_t b) -> uint8_t { return a & b; });

}

TEST_CASE("Opcode 3, Or") {
test_op(3, [](uint8_t a, uint8_t b) -> uint8_t { return a | b; });

}

REQUIRE() is a Catch2 macro that will
cause the test to fail is the contained
expression does not evaluate to true.

TEST_CASE() allows tests to be di-
vided into distinct operations, so that
testing and debugging of one oper-
ation does not require running the
entire test suite on a given compo-
nent.

In this example each operation sup-
ported by the AluDevice is given
its own TEST_CASE(), but they are
able to share the common test_op()
function.
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Catch2 provides its own main() which handles parsing command line arguments,
running requested tests, and reporting results. For example, the following command∗ ∗As discussed previously, manually

running such commands is not a nor-
mal workflow for ProcDesign, and is
merely discussed here for complete-
ness.

would run just the addition test of the above program:

./tests "Opcode 0\, Addition"

Which will result in:

Filters: "Opcode 0\, Addition"
Randomness seeded to: 773214706
=====================================================
All tests passed (65536 assertions in 1 test case)

Effectively all development environ-
ments have integrations for specifying
and running individual tests from
a dedicated test panel which tracks
far more metrics (test runtime, result
history, etc) than is available from
manually invoking test binaries.Invoking the test program without any arguments will run all the available tests,

resulting in:

Randomness seeded to: 2727790692
=====================================================
All tests passed (262144 assertions in 4 test cases)

ProcDesign uses CMakes’s CTest infrastructure to drive testing in most contexts,
and Catch2 provides the ability to automatically integerate TEST_CASEs with CTest
drivers with the following:

Figure 2.2.
VSCode integrated CTest panel

include(Catch)
catch_discover_tests(tests)

Catch2 provides infrastructure for setting up and tearing down test instrumen-
tation on a per test case basis. ProcDesign uses this capacity to serialize coverage
information† to disk after each test, and to clean up coverage state information be- †Coverage information is a line-

by-line accounting of what elements
of the source code being tested has
been exercised by a given test. Ideally,
the entirety of an RTL component’s
source code should be exercised and
verified by tests.

tween tests. The ProcDesign testing utilities also use Catch2 to name and serialize
waveform data to disk if that capacity has been enabled for a given RTL design.

2.6 ProcDesign Utilities

The ProcDesign team maintains a small set of utilities for adapting CMake, Verilator,
and Catch2 to its own conventions. These can be split into two main categories:

⋄ CMake functions used to track and maintain collections of HDL source files
⋄ C++ libraries and headers that provide convenient mechanisms for correctly

authoring verification tests inside the Catch2 testing environment
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There have been recent efforts to provide native CMake support for HDLs9, but 9CMake Issue: Verilog: Support HDL
Languages.there has not been widespread consensus on how to integrate the nature of an

RTL simulation with the abstractions currently provided by CMake for software
development. It may be that new abstractions are needed.

In any case, ProcDesign sidesteps the issue by not attempting to add HDL support
to native CMake functions. Instead the team has implemented its own suite of nyu_
prefixed functions such as nyu_add_sv which associates SystemVerilog source code
to a specific library or simulation executable. It operates as follows:

Listing 11. nyu_add_sv CMake
function

function(nyu_add_sv TARGET)
foreach(_src IN LISTS ARGN)
file(REAL_PATH ${_src} _real)
set_property(TARGET ${TARGET} APPEND
PROPERTY SV_SOURCES ${_real}

)
set_property(TARGET ${TARGET} APPEND
PROPERTY SV_SRC_PATHS ${_real}

)
set_property(TARGET ${TARGET} APPEND
PROPERTY SV_SOURCES_NOGENEX ${_real}

)
endforeach()

endfunction()

This function tracks SystemVerilog
source files via manipulation of var-
ious properties specific to the NYU
utility functions.

All of the nyu_ CMake functions op-
erate on this same principle, which
mirrors how CMake internally imple-
ments support for various features.

The C++ testing utilities consist mostly of conveniences on top of native Verilator
behavior, such as an eval() function that can produce multiple state evaluations in
a single call, or a reset() function that is able to fully reset components designed
following ProcDesign conventions.

One function that deserves attention is getDUT(),∗ as it solves two complicated ∗getDUT() usage is demonstrated in
Listing 10.issues for ProcDesign. The first is the issue of lifetime, Verilator models carry state

information that must persist long enough to be serialized into test reports. If models
were allowed to go out of scope at the end of a test, the Catch2 test reporters would
not be able to access that state information. getDUT() ensures the lifetime of models
persists appropriately throughout the simulation.

getDUT() has been subject to a num-
ber of bugs, as its behavior is some-
what counter to normal Verilator
usage. Most recently its overload
mechanism was broken due to an
innocuous change in how Verilator
handled individual model tracing.
See [10]

The second is transparently treating tracing models (models which Verilator has
generated to create waveforms) and non-tracing models the exact same, using the
exact same test code, with the behavior configured by only a CMake option(). The
getDUT() function uses C++20 concepts to provide overloads which return wrapped
versions of tracing models. In tests these wrappers can be treated identically to
non-tracing models.



3 Beyond the Toolchain

Other elements of the ProcDesign process, beyond just the technical details of its
toolchain, are unorthodox for an academic RTL design effort. These are worth some
consideration insomuch as they have impacts on the development process as great or
greater than the toolchain.

3.1 SCM and Documentation

In keeping with the principle of developing of useful, relevant skills that members
can make use of in either the software or the hardware space, best practices in source
code management (SCM) and documentation are a core focus for the ProcDesign
team. The SCM mechanism used by the team is git11 and the primary documentation 11Hamano, J. et al. git version 2.45.1.

Apr. 29, 2024.mechanism is Github Flavored Markdown (GFM).12

12Github. GitHub Flavored Markdown
Spec version 0.29-gfm (Apr. 6, 2019).

ProcDesign uses an open-source inspired approach to source code management.
Teammembers fork and manage their own repositories of projects they are working
on, with contributions incorporated via pull requests.∗ The upstream ProcDesign ∗Pull Requests are a process by which

an individual petitions to have their
code incorporated into a repository
controlled by a different individual.
Many git-hosting sites have formal-
ized this process with dedicated work-
flows and managed tools. ProcDesign
uses Github’s Pull Request mecha-
nism.

repositories are controlled by experienced members of the team’s leadership, with
technical overseers of particular elements named as "Czars".

For example, the Core Czar is the immediate supervisor of the RISC-V core
and controls the merging of code into the upstream repository from which the
other teammembers fork. Czars also oversee elements such as the bus architectures,
memory subsystem, documentation, and software components of the project.

ProcDesign uses a rebase-based git workflow, and encourages the use of Conven-
tional Commits13 for commit messages. Strong indoctrination of teammembers into 13Petrungaro, D. et al. Conventional

Commits version 1.0.0 (Apr. 20, 2020).git usages early in their introduction with the team has minimized ProcDesign’s ex-
posure to anti-patterns such as large blocks of commented code, or multiple versions
of components stored in various backup locations.

Documentation is kept entirely inside the various project git repositories.† As †See Appendix A for an example of the
rendered documentation.documentation is written in GFM, it is navigable and viewable directly in the reposito-

ries’ Github web interfaces. Development environments used by ProcDesign typically
also have integrations for rendering GFM.

3.2 Continuous Integration

Continuous integration refers to the process of continually testing a product or
component as it is developed.14 As a practical matter for most modern software devel- 14Booch, G. et al. Object-Oriented Analy-

sis and Design with Applications isbn:
978-0201895513 (Addison Wesley, Mar.
2001).

opment, this means running the entire testsuite on each pull request and inspecting
test results and artifacts before deciding to merge a change.

Whenever a ProcDesign teammember opens a pull request against a project repos-
itory, the testsuite is automatically run via Github Actions. This is possible because
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of the portability of the NYU toolchain, having no commercial components that are
not readily available on free-to-use testing infrastructure. An entire ProcDesign test
flow is described here:

Listing 12. Test workflow from the
ProcDesign component template

steps:
- name: Install Build Dependencies
run: |
pacman --noconfirm -Syu
pacman --noconfirm -S cmake ninja git curl zip unzip tar

verilator

- name: Checkout
uses: actions/checkout@v4

- name: Configure
run: cmake . -G Ninja -DNYU_BUILD_TESTS=ON

- name: Build
run: cmake --build . --config Release

- name: Test & Generate Coverage
run: |
ctest -C Release --output-on-failure
sed -i -e ’/\/share\//d’ -e ’/\/dv\//d’ dv/*.dat
verilator_coverage -write-info coverage.txt dv/*.dat

- name: Upload Coverage
uses: codecov/codecov-action@v4
with:
token: ${{ secrets.CODECOV_TOKEN }}
files: ./coverage.txt
fail_ci_if_error: true

The NYU_BUILD_TESTS CMake option
controls whether or not tests are
built. When used as a dependency
of a parent project, tests for child
components are not built.

CTest is used to run all the test cases
that have been implemented for the
RTL components in the repo. The
following two lines coalesce the gen-
erated coverage data into a single
file.

Finally, the coverage is uploaded to
Codecov, a coverage tracking and alert
system.

The continuous integration workflow provides project Czars with important
information directly, as failing tests are an obvious indication that the changes
are unready to be merged. A more in-depth metric is provided by the coverage
information.

ProcDesign uses the dedicated Codecov service which will alert the project Czar if
testing coverage has regressed, meaning a lower percentage of HDL source code lines
are being tested after a pull request than before. As most ProcDesign repositories
are at 100% coverage, this means attempting to add any untested HDL code to a repo
causes an alert.



4 Future Work

There are toolchain challenges that are being actively tackled by the NYU Processor
Design teammembers, such as native CMake support for HDLs, and the Verilator
pathing issues on Windows. The latter especially represents a major roadblock for
onboarding new engineering students into the RTL design space.

The ProcDesign team remains primarily focused on RTL design and verification,
and has not yet had to fully tackled other elements of hardware fabrication such
as memory compilers, synthesis for FPGA, or attempting a tapeout. These future
challenges present ample oppertunities to test the NYU approach of merging modern
software and hardware toolchains and workflows.

Perhaps most pressingly, as the ProcDesign team matures and founding members
graduate and move on, the strength of the documentation, as well as the ease and
intuitiveness of the toolchain components, will be tested. Only time will tell if these
toolchain mechanisms prove resilient under the churn of new personnel, or if they
prove too obtrusive and are abandoned for more traditional tooling.
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